The core of chloroplast nucleoids contains architectural SWIB domain proteins.
نویسندگان
چکیده
A highly enriched fraction of the transcriptionally active chromosome from chloroplasts of spinach (Spinacia oleracea) was analyzed by two-dimensional gel electrophoresis and mass spectrometry to identify proteins involved in structuring of the nucleoid core. Among such plastid nucleoid-associated candidate proteins a 12-kD SWIB (SWI/SNF complex B) domain-containing protein was identified. It belongs to a subgroup of low molecular mass SWIB domain proteins, which in Arabidopsis thaliana has six members (SWIB-1 to SWIB-6) with predictions for localization in the two DNA-containing organelles. Green/red fluorescent protein fusions of four of them were shown to be targeted to chloroplasts, where they colocalize with each other as well as with the plastid envelope DNA binding protein in structures corresponding to plastid nucleoids. For SWIB-6 and SWIB-4, a second localization in mitochondria and nucleus, respectively, could be observed. SWIB-4 has a histone H1 motif next to the SWIB domain and was shown to bind to DNA. Moreover, the recombinant SWIB-4 protein was shown to induce compaction and condensation of nucleoids and to functionally complement a mutant of Escherichia coli lacking the histone-like nucleoid structuring protein H-NS.
منابع مشابه
MFP1 is a thylakoid-associated, nucleoid-binding protein with a coiled-coil structure.
Plastid DNA, like bacterial and mitochondrial DNA, is organized into protein-DNA complexes called nucleoids. Plastid nucleoids are believed to be associated with the inner envelope in developing plastids and the thylakoid membranes in mature chloroplasts, but the mechanism for this re-localization is unknown. Here, we present the further characterization of the coiled-coil DNA-binding protein M...
متن کاملDetection and localization of a chloroplast-encoded HU-like protein that organizes chloroplast nucleoids.
Chloroplast DNA (cpDNA) is packed into discrete structures called chloroplast nucleoids (cp-nucleoids). The structure of cpDNA is thought to be important for its maintenance and regulation. In bacteria and mitochondria, histone-like proteins (such as HU and Abf2, respectively) are abundant and play important roles in DNA organization. However, a primary structural protein has yet to be found in...
متن کاملC-Terminal Region of Sulfite Reductase Is Important to Localize to Chloroplast Nucleoids in Land Plants
Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied component of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein, however, is becoming less likely because of the recent findings that SiRs do not associate with cp nucleoids in some plant species, suc...
متن کاملUse of the fluorochrome 4'6-diamidino-2-phenylindole in genetic and developmental studies of chloroplast DNA
Use of the DNA-specific fluorochrome 4'6-diamidino-2-phenylindole (DAPI) makes it possible to examine in situ the structure of chloroplast DNA (chDNA) with the fluorescence microscope. This simplifies the study of genetic and developmental changes in chloroplast DNA. Three examples are presented. (a) Wild-type Euglena gracilis B contains several chloroplast DNA nucleoids per chloroplast. A yell...
متن کاملWHIRLY1 is a major organizer of chloroplast nucleoids
WHIRLY1 is an abundant protein of chloroplast nucleoids, which has also been named pTAC-1 with regard to its detection in the proteome of transcriptionally active chromosomes (TAC). In barley primary foliage leaves, expression of the WHIRLY1 gene is highest at the base whereas protein accumulation is highest in the middle of the leaf where young developing chloroplasts are found. In order to el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 24 7 شماره
صفحات -
تاریخ انتشار 2012